Group 1 and 2 metabotropic glutamate receptors play differential roles in hippocampal long-term depression and long-term potentiation in freely moving rats.

نویسنده

  • D Manahan-Vaughan
چکیده

This study examined the role of metabotropic glutamate receptors (mGluRs) in hippocampal long-term depression (LTD) in vivo. The group 1 mGluR antagonist (S)4-carboxyphenylglycine (4CPG), group 1/2 antagonist (RS)-alpha-methyl-4-carboxyphenylglycine (MCPG), and group 2 antagonists (RS)-alpha-methylserine-O-phos-phate monophenyl ester (MSOPPE) and (2S)-alpha-ethylglutamic acid (EGLU) were used. The NMDA receptor antagonist D(-)-2-amino-5-phosphonopentanoic acid (AP5) was used to examine the NMDA receptor contribution to the observed LTD. Adult male Wistar rats underwent implantation of stimulating and recording electrodes into the Schaffer collaterals and CA1 stratum radiatum, respectively. After recovery of 5-7 d, the field EPSP was measured from freely moving animals. Drugs were applied either before or after 1 Hz low-frequency train (LFT) or 100 Hz stimulation via a cannula implanted in the lateral cerebral ventricle. Nine hundred pulses at 1 Hz produced an LTD that was marked and long-lasting. This LTD was completely inhibited by pre-LFT application of AP5. MCPG inhibited LTD from 2 hr post-LFT. 4CPG partially impaired LTD. MSOPPE and EGLU completely blocked induction of LTD, although short-term depression remained intact. MSOPPE did not block long-term potentiation (LTP) induced by 100 Hz stimulation, whereas 4CPG produced a significant inhibition. When MSOPPE was present, LTD could not be induced either before or after LTP induction, whereas LTD could be induced in an identical protocol in vehicle-injected animals. These results suggest a differential role for mGluRs in NMDA receptor-dependent hippocampal LTD in vivo. Group 1 mGluRs may play a role in both LTD and LTP, whereas group 2 mGluRs may be critically involved only in LTD induction.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

(S)- 3,5-Dihydroxyphenylglycine )an agonist for group I metabotropic glutamate receptors( induced synaptic potentiation at excitatory synapses on fast spiking GABAergic cells in visual cortex

Introduction: (S)- 3,5-Dihydroxyphenylglycine (DHPG) is an agonist for group I metabotropic glutamate receptors. DHPG-induced synaptic depression of excitatory synapses on hippocampal pyramidal neurons is well known model for synaptic plasticity studies. The aim of the present study was to examine the effects of DHPG superfusion on excitatory synapses on pyramidal and fast-spiking GABAergic cel...

متن کامل

The metabotropic glutamate receptor mGluR3 is critically required for hippocampal long-term depression and modulates long-term potentiation in the dentate gyrus of freely moving rats.

Group II metabotropic glutamate receptors (mGluRs) play an important role in the regulation of hippocampal synaptic plasticity in vivo: long-term potentiation (LTP) is inhibited and long-term depression (LTD) is enhanced by activation of these receptors. The contribution, in vivo, of the individual group II mGluR subtypes has not been characterized. We analysed the involvement of the subtype mG...

متن کامل

P6: Metabotropic Glutamate Receptor-Dependent Role in the Formation of Long-Term Potentiation

Long-term potentiation (LTP) is a reflection of synaptic plasticity that induced by specific patterns of synaptic activity and has an important role in learning and memory. The first clue of the potential role of glutamate receptors in LTP was in 1991 with the observation that the mGluR agonists 1-amino-1, 3-cyclopentanedicarboxylic acid (ACPD), increased LTP. Studies have shown that ACPD induc...

متن کامل

The metabotropic glutamate receptor, mGluR5, is a key determinant of good and bad spatial learning performance and hippocampal synaptic plasticity.

Hippocampal synaptic plasticity is expressed to very different extents in distinct rat strains in vivo. This may correlate with differences in learning ability. We investigated whether the metabotropic glutamate receptor mGluR5 contributes to differences in long-term potentiation (LTP) and learning in freely moving hooded Lister (HL) and Wistar rats. High-frequency tetanization (HFT) generated ...

متن کامل

Endocannabinoids Induce Lateral Long-Term Potentiation of Transmitter Release by Stimulation of Gliotransmission.

Endocannabinoids (eCBs) play key roles in brain function, acting as modulatory signals in synaptic transmission and plasticity. They are recognized as retrograde messengers that mediate long-term synaptic depression (LTD), but their ability to induce long-term potentiation (LTP) is poorly known. We show that eCBs induce the long-term enhancement of transmitter release at single hippocampal syna...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • The Journal of neuroscience : the official journal of the Society for Neuroscience

دوره 17 9  شماره 

صفحات  -

تاریخ انتشار 1997